
HIGH-SPEED REGULAR EXPRESSION MATCHING ENGINE
USING MULTI-CHARACTER NFA

Norio Yamagaki†, Reetinder Sidhu††, Satoshi Kamiya†

†System IP Core Research Laboratories
 NEC Corporation

 Kawasaki, Kanagawa, Japan
email: {n-yamagaki@cj, kamiya@ak}.jp.nec.com

††Applied Research Group
 Satyam Computer Services Ltd.

Bangalore, India
email: Reetinder_Sidhu@satyam.com

ABSTRACT

An approach is presented for high throughput matching of
regular expressions (regexes) by first converting them into
corresponding Non-deterministic Finite Automata (NFAs)
which are then configured onto a FPGA. The key novel
feature is a technique that, for any given regex, constructs
an NFA that processes multiple characters per clock cycle.
An efficient algorithm is proposed that outputs an NFA
which processes twice the number of characters as the input
one. A technique is also proposed that implements the range
match operation (e.g. [a-z]) efficiently. A program has been
written that implements above ideas to convert regexes into
NFAs specified in a structural Hardware Design Language
(HDL), which are then mapped onto a FPGA. Performance
is evaluated using real world regexes (Snort ruleset). The
results demonstrate the practical utility of the approach. For
example, for a set of 2,691 regexes, while the standard 1-
character NFA obtains a throughput of 1.25 Gbps, our 4-
character NFA achieves a throughput of 3.63 Gbps, while
requiring only 20% more LUTs and 6% less flip-flops.

1. INTRODUCTION

Network bandwidths have been rising rapidly. At the same
time, the frequency of network attacks and spam has been
increasing. It is also becoming more important to provide
varying Quality of Service (QoS) to different types of
traffic. All above problems require packet processing, a key
operation of which is searching packet contents for
specified patterns which are typically specified as regular
expressions (henceforth called “regex”). However, doing so
at a throughput that matches network bandwidth, while
crucial, has proven quite challenging.
 Typically, on microprocessors, regex matching [1] is
performed by first converting the given regex into a
corresponding NFA or Deterministic Finite Automaton
(DFA) which is then used to search input text characters.
While a DFA can process each character in constant time
(i.e. it requires O(1) time), the number of DFA states, for an

n character regex, can be O(2n) [2], which in some cases
can significantly degrade performance. On FPGAs, on the
other hand, regex matching can be performed using NFAs,
again taking constant time per text character. And since
NFA size is only O(n) [2], the above problem is avoided.
While NFAs can be used on microprocessors as well, doing
so would require O(n) time per input text character. On
FPGAs, above time is reduced O(1) by exploiting the
available fine-grained parallelism which demonstrates a
fundamental advantage FPGAs have over microprocessors
for regex matching (for more details, please see Ref. [3]).
While FPGAs have been used for simple string matching
[4], the focus of this paper is on regex matching.
 While the above NFA-based approach is quite efficient
and throughput obtained is high, it is not high enough in the
context of multi-gigabit wire speeds existing today and
even faster speeds expected in the near future. So to
improve throughput of above approach, some works [5][6]
have been done on constructing NFAs that process multiple
characters per clock cycle (henceforth called “multi-
character NFA”). While improved throughput is shown for
some examples, no procedure is provided for converting an
arbitrary regex into a multi-character NFA.
 This paper also proposes an approach for converting a
regex into a multi-character NFA, but the approach is
different from above previous works. Algorithms are
provided to convert an arbitrary regex into an NFA capable
of processing 2k characters (for desired natural number k)
per clock cycle. Perhaps as importantly, in comparison to
previous works, the amount of additional logic required for
multi-character NFA (relative to a 1-character NFA) is
quite modest. In addition, a technique to generate efficient
range match logic is also presented.
 The above ideas are implemented in a program that
outputs NFAs specified in a structural HDL which can be
mapped onto an FPGA. The significant throughput
improvement obtained using the proposed approach, using
only a relatively small amount of additional logic is
demonstrated by the results obtained for a few thousand
real world regexes extracted from a Snort ruleset [7].
 The rest of this paper is organized as follows: Section 2
presents the background. The proposed approach is
described in Section 3, and the performance evaluation in
Section 4. Finally, Section 5 concludes this work.

* This work was partly supported by Ministry of Internal
Affairs and Communications (MIC) in Japan.

* The authors acknowledge the significant work assistance of
Ashwini H. S. in implementation of the proposed approach.

978-1-4244-1961-6/08/$25.00 ©2008 IEEE.
131

a

1 Match
Result

Input Text Character

b c d e

Fig. 1. NFA-based regex matching logic for “a(bc)*(d|e)”.

2. BACKGROUND

First, we focus on the NFA-based regex matching logic on
FPGAs. Next, we discuss related works using multi-
character NFA so far.

2.1. NFA-based Regex Matching Logic

Sidhu, et al. propose a new regex matching logic design
methodology [3]. They implement each state of NFA as a
flip-flop, and its value shows whether the state is active or
not. They also propose three basic NFA logic structures for
the metacharacters of regexes ‘·’, ‘|’, and ‘*’, and one logic
structure for other characters. In the syntax tree, the non-
leaf metacharacter nodes and the leaf character nodes are
replaced by the corresponding logic structures yielding the
required NFA logic. Figure 1 shows an example of NFA-
based regex matching logic for “a(bc)*(d|e)”, where the
boxes a to e are character comparators. The simple and
efficient NFA logic design enables high throughput. Since
logic needs to be reconfigured when regexes are modified,
the use of a reconfigurable device like a FPGA is required.

2.2. NFA-based Regex Matching Logic using Multi-
Character NFA

In the above architecture, a single text character is
processed in each clock cycle. On the other hand, to
improve throughput, some works have been undertaken that
process multiple characters per clock cycle.
 Clark, et al. [5] propose a new architecture using multi-
character NFAs, whose transition conditions (labels) consist
of multiple characters. In this regard, however, to tackle
wherever the character string of the label starts in the input
string, the same number of NFAs as processing characters
are required for a regex considering the offset. Therefore,
although it can improve the throughput, its ability to do so
is limited by the somewhat significant increase in logic size.
Sutton [6] also proposes a new architecture using the
similar manner to Clark, et al., the difference being parallel
or sequential processing of multiple characters. This
approach implements multiple character comparators
between flip-flops. However, more the characters processed
per clock cycle, the longer each path between flip-flops
becomes. As a result, operating frequency would decrease,
reducing the gain in throughput. Moreover, none of the
above gives an effective procedure to construct a multi-
character NFA for an arbitrary regex.

3. PROPOSED METHOD

We propose a novel logic design method using multi-
character NFAs to realize high-speed regex matching. The
method accepts several regexes as input, and outputs a
description of the corresponding NFAs in HDL. That is, it
is executed as preliminary step for the hardware
configuration. This method consists of two key tasks;

NFA Construction: parsing of input regex into the syntax
 tree, conversion of the tree into an NFA structure, and
 modification of the NFA to support multiple characters
 per clock cycle.
HDL Generation: specification of the above multi-
 character NFA using structural HDL.
By performing the NFA construction task, our method can
convert an input regex into the NFA which can process
multiple (power of two) characters per clock cycle. Unlike
the architecture presented in Ref. [5], our method constructs
a single multi-character NFA which has almost the same
number of states as an original 1-character NFA. If only the
matching regex and not the exact match position is required,
the constructed multi-character NFA has exactly the same
number of states as the original NFA. In the HDL
generation task, we also propose a technique to generate
efficient range match logic. In this way, our method can
configure the regex matching logic which can process
multiple characters per clock cycle, and it can be expected
to improve throughput. In the following, we explain the
NFA construction task and the range match logic design.

3.1. NFA Construction

NFA construction task consists of two sub-tasks which are
described in the following sections;
Phase 1: Conversion of a regex in post-order into its NFA
 graph that processes a single character every clock cycle.
Phase 2: Conversion of the above 1-character NFA graph
 into an NFA graph that can process 2k characters (for
 desired natural number k) characters every clock cycle.
In phase 1, an input regex in post-order form is used to
create the NFA graph corresponding to the regex. In order
to perform this task for the various metacharacters, various
graph operations have been developed. In phase 2, we
propose a simple algorithm based on the transitive graph
closure and execute a number of times depending on the
number of processing characters per clock cycle. The
resulting graph represents the NFA which can process the
desired number of characters, 2k, in parallel.

3.1.1. Phase 1: Regular Expression to 1-Character NFA

The input to the phase 1 of NFA construction task is a regex
in post-order and the output is a 1-character NFA for the
input regex. The regex in post-order can be easily obtained

132

1 for i = 1 to length(str)
2 switch(str[i])
3 case ‘|’: push(proc_or(pop(), pop()))
4 case ‘ · ’: push(proc_and(pop(), pop()))
5 case ‘-’: push(proc_range(pop(), pop()))
6 case ‘?’: push(proc_ques(pop()))
7 case ‘+’: push(proc_plus(pop()))
8 case ‘*’: push(proc_star(pop()))
9 default : push(proc_char(str[i]))

Fig. 2. Pseudo code of phase 1 (NFA construction).

1 add self edge labeled ‘X’ to initial node
2 for each final node, add a new final node and

connect former to latter by edge labeled ‘X’
3
4 for n = each node in graph
5 for i = each node having edge to node n
6 for j = each node having edge from node n
7 if(edge (n, j) � self edge at line 1)
8 add new edge (i, j)
9 concat. labels of edges (i, n), (n, j)

10 add above label to new edge (i, j)
11
12 remove the original input graph edges, and the

edges inserted at lines 1 and 2

Fig. 3. Pseudo code of phase 2 (NFA construction).

X
i f

a b
c

c

d

e

ca

a

G10

X
i f

a
G1 X

i f
b

G2 X
i f

c
G3

X
i f

b c
G4

G5 X
i f

b c
c

X

X
i fa b c

c

a

G6

X
i f

d
G7 X

i f
e

G8

i f
X

X

d

e

G9

Fig.5. Examples of NFA graphs in phase 1.

a b c � * � d e | �(c)
G1
G5

G1
G2
G3

a b c � * � d e | �(a) a b c � * � d e | �(b)
G1
G4

G10
a b c � * � d e | �(f)

(d) a b c � * � d e | �
G6
G7
G8

(e) a b c � * � d e | �
G6
G9

Fig. 4. An example of the stack in phase 1.

by post-order traversal of its syntax tree. For example, the
regex “a(bc)*(d|e)”, in post-order form is “abc·*·de|·”.
 Figure 2 shows the algorithm. Although this algorithm
is essentially the same as in Ref. [3], it has two additional
functions for metacharacters ‘?’ and ‘+’. In Figure 2, str is
the post-order regex and a stack is used to store pieces of
the NFA graph during processing. For example, the
proc_char function constructs a simple NFA graph like
the graph G1 in Figure 5. In the graph G1, there are three
nodes and two edges, an edge labeled ‘X’ (which denotes an
arbitrary character) from the initial node to the intermediate
one, and an edge labeled the character str[i] from the
intermediate node to the final one. These functions accept
one or two NFA graphs, and they all output an NFA graph,
whose initial node has only output edges labeled ‘X’ and
final node has only input edges. The basic NFA graphs
constructed by the functions for the metacharacters ‘·’, ‘|’,
and ‘*’ are based on Ref. [2].
 Since proc_star, proc_ques, and proc_plus take
O(n) time and the other functions take O(1) time, where n is
the length of the regex, the algorithm requires O(n2) time.

3.1.2. Phase 2: 1-character to Multi-character NFA

In phase 2 of NFA construction task, construction of NFA
graph for handling multiple characters per clock cycle is
performed. The algorithm accepts a graph for an NFA that
processes n characters per clock cycle and outputs a graph
for an NFA that processes 2n characters per clock cycle. A
2k-character NFA is thus obtained using k iterations of the
algorithm. The algorithm is quite similar to the standard
transitive graph closure algorithm. It is remarkable that

such a simple algorithm enables a clean way of producing
multi-character NFAs for arbitrary regexes. The algorithm
is shown in Figure 3. It should be noted that the edges
referred to on lines 5 and 6 are of the original input graph or
those inserted in lines 1 and 2 only and not any of the new
edges constructed by the algorithm. Since the algorithm
doubles the number of final nodes, an NFA for 2k characters
will have 2k final states, each final state corresponding to a
character position, enabling multiple matches at different
positions in the same clock cycle to be accurately reported.
 If only information about whether the input string
matches a regex or not is required (we call this “non-match
mode”), following simplifications can be made; (1) replace
line 2 by “add self edge labeled ‘X’ to the final
node”, and (2) modify line 7 to “if(edge (i, n) � self
edge at line 2 and edge (n, j) � self edge at line
1)”. In this case, an output NFA has the same number of
states as the input NFA. Each edge of a 2k-character NFA is
labeled with a string of length 2k. For example, in Figure 6,
transition from an active state along an edge labeled “bc”
occurs only when the first and second input text characters
in the current clock cycle are ‘b’ and ‘c’, respectively.
 As each step takes O(1) time, the algorithm requires
O(n3) time, n being the number of states in the input NFA.

3.1.3. Example

We show an example of NFA construction for the regex
“a(bc)*(d|e)”. The post-order form “abc·*·de|·” is processed
by phase 1 (Figure 2). Figures 4 and 5 show the stack and
the NFA graphs G1 to G10, respectively. At the end of phase
1, the 1-character NFA graph G10 can be obtained.

133

1

i0 i1 i2 i3

1

i0 i1 i2 i3

2 � I � 11

I � 2

I � 11

Fig. 7. Logic implementation of 2 � I � 11.

a
i f

X a b c

c

d

e

caX
f

X
(a)

i f
XX

f

Xa
cb

ab

Xa
Xa

(b)

i f
XX

bc

cd, ce
f

Xa cbab

XaXa

bc
bc

dX

eX
ad, ae

(c)

Fig. 6. Examples of 2-character NFA graphs.

 Next, the above 1-character NFA is converted into the
multi-character NFA by phase 2 (Figure 3). Figure 6 (a)
shows the NFA graph obtained at line 2 in Figure 3, where
dashed edges show original edges. Figure 6 (b) shows the
half-constructed NFA graph after n = 2, where we omit the
original edges. These tasks are performed for all of n, and
then the 2-character NFA graph as shown in Figure 6 (c)
can be obtained, where the right final state becomes active
when a match occurs at the first position of the two input
character positions, the left state becomes active when a
match occurs at the second character position. If matches
occur at both positions, both states become active. Similarly,
we can obtain the 4-character NFA from above 2-character
NFA. Thus, the 2k-character NFA can be obtained by k
iterations of phase 2.

3.2. Range Matching

The range matching regex matches a range of consecutive
characters. For example, “[0-9]” matches any single
numeric character. Efficient logic for range matching is
obtained as follows. Consider an n-bit input I composed of
bits xn-1 (MSB) to x0 (LSB). Now consider the Boolean
function I � C (C is an n-bit constant, 0 � C � 2n�1) which
is 1 for all I � C and 0 otherwise. First, the Shannon
decomposition of any Boolean function fn of n inputs is;

(1)

If fn represents I � C, then exploiting the monotonic nature
of fn (in the truth table output column, all zeros are at the
bottom), we can be derive;

(2)

where cn-1 is the MSB of C. Similarly, for the I � C;

(3)

 Using the above equations recursively, one obtains
efficient range matching logic. For example, for n = 4, the
logic for 2 � I � 11 is shown in Figure 7. For 8-bit
characters, the above technique, which seems somewhat
better than the one proposed in Ref. [8], enables range
matching logic to be configured using only five 4-input
LUTs (at most) for arbitrary ranges.

3.3. Prototype Implementation

We implement our ideas as a software tool, named Regular
Expression to Verilog NFA translator (REVN). Its input,
one or more regexes, are converted into 1-character NFAs,
which are then converted into multi-character NFAs, which,
specified in Verilog-HDL, is the output.
 The input regexes to REVN are specified in the standard
infix format, and conform to Perl-Compatible RegEx
(PCRE) [9]. The metacharacters accepted are ‘*’, ‘+’, ‘?’,
‘|’, ‘(‘, ‘)’, ‘[‘, ‘-’, ‘]’, ‘^’, ‘$’, ‘.’, ‘\’, ‘{’, and ‘}’. REVN
handles interval quantifiers, “{n}”, “{n, }”, and “{n, m}” in
a straightforward manner, for example, “a{5}” is converted
to “aaaaa”. The characters accepted are any character with
ASCII code from 0x20 (space) to 0x7e (‘˜’), the generic
character types, ‘\d’, ‘\D’, ‘\s’, ‘\S’, ‘\w’, and ‘\W’, and the
non-printing characters, ‘\a’, ‘\e’, ‘\f’, ‘\n’, ‘\r’, ‘\t’, and ‘\x’
(character with hex code). The case insensitive match, and
single line / multi lines match are also supported.
Furthermore, REVN has an option which specifies match
mode or non-match mode, as described in Section 3.1.2.
 The HDL generation task essentially involves traversing
the constructed NFA graph and for its nodes, edges and
labels, specifying flip-flops, wires and combinational logic
respectively, in structural Verilog-HDL. To configure
efficient hardware logic in terms of logic size, the character
comparators are shared among multiple transitions.

4. PERFORMANCE EVALUATION

In this section, the performance of regex matching logic
constructed by our proposed method (using REVN) is
evaluated by configuring it onto FPGA.
 In this evaluation, to use meaningful regexes, we extract
them from Snort 2.4 ruleset (unregistered user release) [7].
Concretely, we focus on “content”, “nocase”, “uricontent”,
“pcre”, and “regex” options, and extract 2,691 regexes
which do not include interval quantifiers and additional 357
regexes (3,048 regexes in all) which include them. We
select 64, 128, 256, 512, 1,024, and 2,048 regexes

),,(
),,(),,(

0211

021101

xxhx
xxgxxxf

nnn

nnnnn

�
��

−−−

−−−−

⋅+
⋅=

�
�
�

=+
=⋅

=
−−−−

−−−−
−)1(),,(

)0(),,(
),,(

10211

10211
01

nnnn

nnnn
nn cxxhx

cxxgx
xxf

�
�

�

�
�
�

=⋅
=+

=
−−−−

−−−−
−)1(),,(

)0(),,(
),,(

10211

10211
01

nnnn

nnnn
nn cxxhx

cxxgx
xxf

�
�

�

134

Table 2. Logic usage of 2,691 regexes (non-match mode).

#regexes #chars
1-character NFA 2-character NFA 4-character NFA 8-character NFA

ALUT Register
Used.

ALUT Register
Used.

ALUT Register
Used.

ALUT Register
Used. Used Util. Used Util. Used Util. Used Util.

64 971 938 1% 908 1,044 1% 916 (101%) 1,541 1% 932 (103%) 3,414 2% 964 (106%)
128 1,955 1,752 1% 1,721 1,856 1% 1,715 (100%) 2,524 2% 1,732 (101%) 5,459 4% 1,763 (102%)
256 3,877 3,231 2% 3,180 3,389 2% 3,190 (100%) 4,373 3% 3,204 (101%) 8,686 6% 3,237 (102%)
512 7,803 5,965 4% 5,881 6,341 4% 5,992 (102%) 8,046 6% 5,907 (100%) 19,595 14% 5,953 (101%)

1,024 15,506 11,421 8% 11,340 12,072 8% 11,640 (103%) 14,765 10% 11,327 (100%) N/A N/A N/A
2,048 30,956 22,270 16% 22,161 22,697 16% 22,015 (99%) 26,943 19% 20,921 (94%) N/A N/A N/A
2,691 40,896 28,401 20% 28,278 29,303 20% 28,379 (100%) 34,146 24% 26,636 (94%) N/A N/A N/A

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35 40 45
Num. of Characters [K]

Th
ro

ug
hp

ut
 [G

bp
s] 1-character NFA

2-character NFA
4-character NFA
8-character NFA

Fig. 8. Throughput of 2,691 regexes (non-match mode).

Table 1. Maximum operating frequency, f, and throughput, T, of 2,691 regexes (non-match mode).

#regexes #chars 1-character NFA 2-character NFA 4-character NFA 8-character NFA
f [MHz] T [Gbps] f [MHz] T [Gbps] f [MHz] T [Gbps] f [MHz] T [Gbps]

64 971 336.47 2.69 266.60 4.27 (158%) 183.35 5.87 (218%) 126.82 8.12 (302%)
128 1,955 271.96 2.18 246.37 3.94 (181%) 166.56 5.33 (245%) 103.92 6.65 (306%)
256 3,877 261.64 2.09 201.78 3.23 (154%) 160.51 5.14 (245%) 83.00 5.31 (254%)
512 7,803 224.16 1.79 184.09 2.95 (164%) 118.82 3.80 (212%) 84.42 5.40 (301%)

1,024 15,506 199.44 1.60 166.81 2.67 (167%) 124.86 4.00 (250%) N/A N/A
2,048 30,956 164.02 1.31 156.52 2.50 (191%) 110.06 3.52 (268%) N/A N/A
2,691 40,896 156.35 1.25 143.86 2.30 (184%) 113.38 3.63 (290%) N/A N/A

Table 3. Logic usage of 2,691 regexes (match mode).

#regexes #chars
2-character NFA 4-character NFA

ALUT Register
Used.

ALUT Register
Used. Used Util. Used Util.

64 971 1,060 1% 980 (64) 1,568 1% 1,124 (64)
128 1,955 1,939 1% 1,843 (128) 2,590 2% 2,116 (128)
256 3,877 3,572 2% 3,446 (256) 4,601 3% 3,972 (256)
512 7,803 6,767 5% 6,504 (512) 8,605 6% 7,443 (512)

1,024 15,506 12,978 9% 12,651 (1,011) 16,003 11% 14,410 (1,028)
2,048 30,956 24,825 17% 24,150 (2,135) 29,951 21% 27,055 (2,045)
2,691 40,896 31,716 22% 30,936 (2,557) 38,291 27% 34,781 (2,715)

randomly from the above two regex sets, and construct 1-,
2-, 4-, and 8-character NFAs for each group. We target
Altera Stratix II (EP2S180) FPGA [10] and use Quartus II
7.2 SP1 [11] without any optimization options.

4.1. Experimental Results

 Tables 1 and 2 show the maximum operating frequency,
throughput, and the logic usage for the 2,691 regex set in
non-match mode. Figure 8 shows the throughput for the
same regexes. The throughput is calculated by multiplying
the number of bits in characters processed every clock cycle
by operating frequency. In Tables 1 and 2, #char (the
number of characters) shows the total character count of the
regexes except metacharacters, where the generic character
types, the non-printing characters, and range match are
counted as one character. Percentage within “(·)” shows an
increase compared to 1-character NFA for each regex group,
and “N/A” shows unavailable results because of very long
compilation time in Quartus II. Table 1 and Figure 8 show
that although multi-character NFA can improve throughput,
the average increase is not proportional to the number of
characters processed but approximately 170%, 250%, and
290% for 2-, 4-, and 8-character NFAs, respectively. Table
2 shows that the logic usage increases as the total character

count is increased. It also increases as the number of
characters processed is increased but the register usage is
approximately constant. Although our method with non-
match mode can construct multi-character NFA without
change in the number of states, the multi-character NFA has
slightly complex transition logic, which degrades operating
frequency of the constructed multi-character NFA. In
particular, the 8-character NFA logic usage seems
disproportionately higher. This is due to the architecture of
ALUTs, significantly more of which are required for
transition logic for 8-character strings. Sharing in transition
logic needs to be explored to reduce the logic requirements.
The slight differences in flip-flop count are considered to be
due to the optimization done by Quartus II.
 Next, Table 3 shows the logic usage for the same set in
match mode. In this mode, our method doubles the final
states for each regex according to the number of characters
processed. Ideally, the number of increased registers is
calculated by (m�1)·Nr, where m (m � 2) is the number of
characters processed and Nr is the number of regexes. Each
value within “(·)” shows the increase of registers per
increased characters processed compared to the same multi-
character NFA in non-match mode (Table 2). In Table 3,
the extra registers is almost the same as the number of
regexes. Due to them, the logic usage increases more than
one in non-match mode. However, we confirm that the
throughput shows similar results to non-match mode. That

135

0
1
2
3
4
5
6
7
8
9

10

0 20 40 60 80 100 120 140 160 180 200
Num. of Characters [K]

Th
ro

ug
hp

ut
 [G

bp
s] 1-character NFA

2-character NFA
4-character NFA
8-character NFA

Fig. 9. Throughput of 3,048 regexes (non-match mode).

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100 120 140 160 180 200
Num. of Characters [K]

A
LU

T
U

til
iz

at
io

n

1-character NFA
2-character NFA
4-character NFA
8-character NFA

Fig. 10. Logic usage of 3,048 regexes (non-match mode).

is, the information of the matching position can be obtained
without degradation of throughput by using our method.
 Figures 9 and 10 show the throughput and logic usage
for the 3,048 regex set in non-match mode. Due to REVN
handling of interval quantifiers, this regex set includes more
characters than the previous one. In fact, while the previous
set includes up to 40,896 characters, this set includes up to
195,577 characters. In this case, although the throughput
declines rapidly up to 20,000 characters, it does not do so
from then on. The logic usage increases in proportion to the
total character count. In the case of 195,577 characters,
while the logic usage is more than 90% in 2- and 4-
character NFAs, the throughput achieved is 1 and 2 Gbps
respectively. Therefore, our method is expected to achieve
high-speed regex matching.
 Finally, we evaluate efficiency of each multi-character
NFA by using performance [5] shown as Equation (4). This
is a metric considering throughput and character density,
and a logic with higher performance is more efficient logic.

(4)

The number of Logic Elements (LEs) in Stratix II can be
obtained as 1.25 times the number of ALUTs [10]. For
2,691 regexes in non-match mode, performance of 1-, 2-,
and 4-character NFA are 1.44, 2.57, and 3.48 Gb/(s·LE),
respectively. In addition, for 3,048 regexes in non-match
mode, those of 1-, 2-character NFA are 1.20 and 2.10
Gb/(s·LE), respectively. In the other rule groups except 8-
character NFA, similar trends are noted (8-character NFA
shows similar values to 1-character NFA). Therefore, 4-
character NFA is currently the most efficient.

5. CONCLUSION

In this paper, we proposed a novel regex matching logic
design technique using multi-character NFAs. A simple
algorithm for constructing such NFAs for arbitrary regexes
was presented. Also, an efficient range match logic design
technique is described.
 Further, the proposed ideas were implemented in a
software tool (REVN) and their utility was tested on a few
thousand real world regexes. The results of performance
evaluation show that our method can significantly improve

throughput at only a relatively modest cost in terms of
additional logic even without turning on optimizations
while performing FPGA mapping. By turning on some of
them, logic speed is likely to increase. Therefore, further
throughput improvement can be expected.
 Future directions to extend the work include reduction
of logic size by sharing the states among multiple NFA,
sharing transition logic, more detailed performance
evaluations in various cases and on the actual system, and
enhancement of PCRE support even further.

6. REFERENCES

[1] J. E. F. Friedl, “Mastering Regular Expressions: Powerful
Techniques for Perl and Other Tools,” O’Reilly Media, Inc.,
Jan. 1997.

[2] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction
to Automata Theory, Languages and Computability, 2nd
Edition,” Addison-Wesley, Nov. 2000.

[3] R. Sidhu and V. K. Prasanna, “Fast Regular Expression
Matching using FPGAs,” in Proc. 9th IEEE Symosium on
Field-Programmable Custom Computing Machines
(FCCM’01), pp.227-238, April 2001.

[4] I. Sourdis and D. Pnevmatikatos, “Fast, Large-Scale String
Match for a 10Gbps FPGA-based Network Intrusion
Detection System,” in Proc. 13th International Conference
on Field Programmable Logic and Applications (FPL’03),
pp.880-889, Sept. 2003.

[5] C. R. Clark and D. E. Schimmel, “Scalable Pattern Matching
for High Speed Networks,” in Proc. 12th IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM’04), pp.249-257, April 2004.

[6] P. Sutton, “Partial Character Decoding for Improved
Regular Expression Matching in FPGAs,” in Proc. 2004
IEEE International Conference on Field-Programmble
Technology (ICFPT’04), pp.25-32, Dec. 2004.

[7] http://www.snort.org/
[8] E. W. Spirznagel, “CMOS Implementations of a Range

Check Circuit,” Dept. of CSE, Washington Univ. Technical
Report WUCSE-2004-39, July, 2004.

[9] http://www.pcre.org/
[10] Stratix II Device Handbook: Volume 1, available at

http://www.altera.com/literature/hb/stx2/stx2_sii5v1.pdf
[11] http://www.altera.com/products/software/products/quartus2/

qts-index.html

sChars / LEt Throughpu
Densityt Throughpue Performanc

×=
×=

136

